Copied to
clipboard

G = C32⋊Dic13order 468 = 22·32·13

The semidirect product of C32 and Dic13 acting via Dic13/C13=C4

metabelian, soluble, monomial, A-group

Aliases: C32⋊Dic13, (C3×C39)⋊6C4, C3⋊S3.D13, C132(C32⋊C4), (C13×C3⋊S3).2C2, SmallGroup(468,40)

Series: Derived Chief Lower central Upper central

C1C3×C39 — C32⋊Dic13
C1C13C3×C39C13×C3⋊S3 — C32⋊Dic13
C3×C39 — C32⋊Dic13
C1

Generators and relations for C32⋊Dic13
 G = < a,b,c,d | a3=b3=c26=1, d2=c13, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >

9C2
2C3
2C3
117C4
6S3
6S3
9C26
2C39
2C39
9Dic13
6S3×C13
6S3×C13
13C32⋊C4

Smallest permutation representation of C32⋊Dic13
On 78 points
Generators in S78
(1 76 63)(2 64 77)(3 78 65)(4 66 53)(5 54 67)(6 68 55)(7 56 69)(8 70 57)(9 58 71)(10 72 59)(11 60 73)(12 74 61)(13 62 75)(14 38 51)(15 52 39)(16 40 27)(17 28 41)(18 42 29)(19 30 43)(20 44 31)(21 32 45)(22 46 33)(23 34 47)(24 48 35)(25 36 49)(26 50 37)
(1 63 76)(2 77 64)(3 65 78)(4 53 66)(5 67 54)(6 55 68)(7 69 56)(8 57 70)(9 71 58)(10 59 72)(11 73 60)(12 61 74)(13 75 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 26)(8 25)(9 24)(10 23)(11 22)(12 21)(13 20)(27 53 40 66)(28 78 41 65)(29 77 42 64)(30 76 43 63)(31 75 44 62)(32 74 45 61)(33 73 46 60)(34 72 47 59)(35 71 48 58)(36 70 49 57)(37 69 50 56)(38 68 51 55)(39 67 52 54)

G:=sub<Sym(78)| (1,76,63)(2,64,77)(3,78,65)(4,66,53)(5,54,67)(6,68,55)(7,56,69)(8,70,57)(9,58,71)(10,72,59)(11,60,73)(12,74,61)(13,62,75)(14,38,51)(15,52,39)(16,40,27)(17,28,41)(18,42,29)(19,30,43)(20,44,31)(21,32,45)(22,46,33)(23,34,47)(24,48,35)(25,36,49)(26,50,37), (1,63,76)(2,77,64)(3,65,78)(4,53,66)(5,67,54)(6,55,68)(7,69,56)(8,57,70)(9,71,58)(10,59,72)(11,73,60)(12,61,74)(13,75,62), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(27,53,40,66)(28,78,41,65)(29,77,42,64)(30,76,43,63)(31,75,44,62)(32,74,45,61)(33,73,46,60)(34,72,47,59)(35,71,48,58)(36,70,49,57)(37,69,50,56)(38,68,51,55)(39,67,52,54)>;

G:=Group( (1,76,63)(2,64,77)(3,78,65)(4,66,53)(5,54,67)(6,68,55)(7,56,69)(8,70,57)(9,58,71)(10,72,59)(11,60,73)(12,74,61)(13,62,75)(14,38,51)(15,52,39)(16,40,27)(17,28,41)(18,42,29)(19,30,43)(20,44,31)(21,32,45)(22,46,33)(23,34,47)(24,48,35)(25,36,49)(26,50,37), (1,63,76)(2,77,64)(3,65,78)(4,53,66)(5,67,54)(6,55,68)(7,69,56)(8,57,70)(9,71,58)(10,59,72)(11,73,60)(12,61,74)(13,75,62), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(27,53,40,66)(28,78,41,65)(29,77,42,64)(30,76,43,63)(31,75,44,62)(32,74,45,61)(33,73,46,60)(34,72,47,59)(35,71,48,58)(36,70,49,57)(37,69,50,56)(38,68,51,55)(39,67,52,54) );

G=PermutationGroup([[(1,76,63),(2,64,77),(3,78,65),(4,66,53),(5,54,67),(6,68,55),(7,56,69),(8,70,57),(9,58,71),(10,72,59),(11,60,73),(12,74,61),(13,62,75),(14,38,51),(15,52,39),(16,40,27),(17,28,41),(18,42,29),(19,30,43),(20,44,31),(21,32,45),(22,46,33),(23,34,47),(24,48,35),(25,36,49),(26,50,37)], [(1,63,76),(2,77,64),(3,65,78),(4,53,66),(5,67,54),(6,55,68),(7,69,56),(8,57,70),(9,71,58),(10,59,72),(11,73,60),(12,61,74),(13,75,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,26),(8,25),(9,24),(10,23),(11,22),(12,21),(13,20),(27,53,40,66),(28,78,41,65),(29,77,42,64),(30,76,43,63),(31,75,44,62),(32,74,45,61),(33,73,46,60),(34,72,47,59),(35,71,48,58),(36,70,49,57),(37,69,50,56),(38,68,51,55),(39,67,52,54)]])

42 conjugacy classes

class 1  2 3A3B4A4B13A···13F26A···26F39A···39X
order12334413···1326···2639···39
size19441171172···218···184···4

42 irreducible representations

dim1112244
type+++-+
imageC1C2C4D13Dic13C32⋊C4C32⋊Dic13
kernelC32⋊Dic13C13×C3⋊S3C3×C39C3⋊S3C32C13C1
# reps11266224

Matrix representation of C32⋊Dic13 in GL6(𝔽157)

100000
010000
0015511200
0021100
0000145
0000136155
,
100000
010000
001000
000100
0000155112
0000211
,
01560000
1330000
0015611200
000100
0000156112
000001
,
62620000
57950000
000010
000001
0015611200
000100

G:=sub<GL(6,GF(157))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,155,21,0,0,0,0,112,1,0,0,0,0,0,0,1,136,0,0,0,0,45,155],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,155,21,0,0,0,0,112,1],[0,1,0,0,0,0,156,33,0,0,0,0,0,0,156,0,0,0,0,0,112,1,0,0,0,0,0,0,156,0,0,0,0,0,112,1],[62,57,0,0,0,0,62,95,0,0,0,0,0,0,0,0,156,0,0,0,0,0,112,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C32⋊Dic13 in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm Dic}_{13}
% in TeX

G:=Group("C3^2:Dic13");
// GroupNames label

G:=SmallGroup(468,40);
// by ID

G=gap.SmallGroup(468,40);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-13,10,302,67,323,248,10804]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^26=1,d^2=c^13,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Dic13 in TeX

׿
×
𝔽